New Methods of Integration in Matrix Models
نویسنده
چکیده
We discuss a new method of integration over matrix variables based on a suitable gauge choice in which the angular variables decouple from the eigenvalues at least for a class of two-matrix models. The calculation of correlation functions involving angular variables is simple in this gauge. Where the method is applicable it also gives an extremely simple proof of the classical integration formula used to reduce multi-matrix models to an integral over the eigenvalues.
منابع مشابه
Wilson wavelets for solving nonlinear stochastic integral equations
A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...
متن کاملA new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integrati...
متن کاملطراحی الگوی انتخاب راهبرد ادغام عمودی در صنایع غذایی کشور در سال 1380 (شرکتهای دارای نیروی انسانی بیش از ۳۵ نفر)
It is impossible to develop and retain the Competitive advantage and gain success without Implementing strategy. The method of strategy selection is one of the most important challenges for the strategists. Different models have been formulated to enable managers to choose the appropriate strategies and some of these models are just formulated for the selection of vertical integration strategie...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کامل